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Classical simulation of quantum circuits is critical for the development of implementations of quantum

algorithms: it does not require access to specialized hardware, facilitates debugging by allowing direct access

to the quantum state, and is the only way to test on inputs that are too big for current NISQ computers.

Many quantum algorithms rely on invariants that result in sparsity in the state vector. A sparse state vector

simulator only computes with non-zero amplitudes. For important classes of algorithms, this results in an

asymptotic improvement in simulation time. While promising prior work has investigated ways to exploit

sparsity, it is still unclear what is the best way to scale sparse simulation to modern multi-core architectures.

In this work, we address this challenge and present qblaze, a highly optimized sparse state vector simulator

based on (i) a compact sorted array representation, and (ii) new, easily parallelizable and highly-scalable

algorithms for all quantum operations. Our extensive experimental evaluation shows that qblaze is often
orders-of-magnitude more efficient than prior sparse state vector simulators even on a single thread, and also

that qblaze scales well to a large number of CPU cores.

Overall, our work enables testing quantum algorithms on input sizes that were previously out of reach.

CCS Concepts: • Computing methodologies → Quantum mechanic simulation; Shared memory
algorithms.
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1 Introduction
Quantum algorithms exploit quantum mechanical phenomena to significantly accelerate certain

computational tasks. One of the earliest examples is prime factorization—a problem for which

classical approaches require exponential time, but which Shor’s quantum algorithm [57] can solve
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in polynomial time. Research has since led to polynomial
1
and superpolynomial

2
speedups on a

range of important problems. These advances have the potential to transform entire fields, including

chemistry [16], biology [23, 24, 52], drug design [14, 55], and cryptography [10, 11].

However, despite substantial progress [15], at the moment quantum computers are too unreliable

and limited in scale for practical applications. For instance, Shor’s algorithm has so far been

demonstrated on quantum devices only for the numbers 15 and 21 [6, 48].
3
On the other hand,

classical computing resources are much cheaper and much more abundant, and that is one of

the main reasons why currently quantum computation is mostly simulated on classical hardware.

Simulations are invaluable for validating hardware designs, and as it turns out, they are also essential

for validating software designs, i.e., algorithms. First, they give the ability to inspect intermediate

quantum states, which is impossible on quantum hardware. Second, quantum algorithms are usually

probabilistic, which complicates testing; a classical simulator gives the option to execute a quantum

computation deterministically in order to debug specific program paths.

A classical simulator of quantum computation manipulates a mathematical description of the

quantum state. When measured in terms of classical resources, such a description can have an

exponential size compared to the size of the quantum system. Because of the high complexity, it is

important to design simulation methods that are able to harness the specific structures found in

quantum computations. A notable example are stabilizer states, which can be represented efficiently

thanks to the Gottesman-Knill theorem; circuits producing only stabilizer states can actually be

simulated in polynomial time [2, 27, 61]. For general but less structured quantum computations,

the most popular methods are based on binary decision diagrams [3, 26, 31, 33, 41, 47, 51, 58, 59, 65,

67, 69, 72, 73] and tensor networks [1, 28, 29, 45, 49, 56, 64, 66, 68, 71].

Jaques and Häner [36] recently introduced a simulation technique that applies a basic form of

compression to the state vector representation of quantum states. With this method, which we

shall call sparse encoding, only the non-zero amplitudes of the state vector are recorded. The sparse

encoding leads to substantial speedups when simulating certain quantum algorithms used for

factoring, discrete logarithms, and quantum chemistry (cf. [36] for more details). For example, in

one instance of Shor’s factoring algorithm [35], a 𝑘-bit number is processed using 𝑛 = 2𝑘 + 2 qubits,

yet the state vector has at most 𝑂 (2𝑘 ) non-zero amplitudes at all times; a sparse encoding tracks

only these amplitudes, which is a quadratic improvement over tracking all of the 2
𝑛
amplitudes of

the state vector, since 𝑂 (2𝑘 ) = 𝑂 (2𝑛
2 ). As a rule, such sparsity arises from classical invariants of

the quantum computation. For example, if the computation involves the quantum registers 𝑥 and 𝑦,

and moreover, the invariant 𝑦 = 𝑓 (𝑥) is guaranteed whenever the registers are measured, then the

potential measurement outcomes for which 𝑦 ≠ 𝑓 (𝑥) necessarily receive zero amplitudes.

Unfortunately, experimental results indicate that Jaques and Häner [36]’s hash table based simu-

lator does not scale well to multiple cores, most likely due to high contention and synchronization

overhead; additionally, hash tables also exhibit poor spatial locality. Concurrently with our work,

Westrick et al. [70] addressed the scalability issue by using a lock-free hash table. However, this

design still suffers from poor spatial locality, and when the qubit count exceeds the machine word

size, extra indirection is used for storing keys so that they can be inserted atomically.

These limitations highlight the need to develop new approaches for efficient sparse simulation

of quantum computations. In this work, we address this challenge and introduce qblaze, a scalable
and highly optimized sparse state quantum circuit simulator, making the following contributions:

1
Plain search [32], gradient estimation [37], convex optimization [7, 18], network flows and graph matching [5], etc.

2
Number theory [9, 57], physical & chemical simulations [4, 12, 38, 42], statistical learning [19, 43, 44, 54], solving linear

systems [34], etc.

3
Larger numbers have been reported, but these approaches bake knowledge about the factors into the implementation [25,

60].
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(b) Gate application cost, 𝑝 threads.
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Fig. 1. Asymptotic cost for the two kinds of state vector updates in qblaze, where 𝑛 is the number of nonzero
entries and 𝑝 is the number of processors. The "Time" column shows the asymptotic running time, and the
"Cache" column shows the asymptotic number of memory transfers assuming cache line size 𝐵. If possible,
phase/permutation gates are queued and applied in groups. Every such group application (a queue flush)
rebuilds the state vector once, which requires sorting. If the group size 𝑘 is smaller than log𝑛, it may be better
to avoid sorting by applying the gates separately. The asymptotic analysis may be found throughout Section 4.
We ignore the cost of reading the sequence of phase/permutation gates to apply because it is often negligible.

• A compact sparse encoding suitable for parallel simulation. It is based on sorted arrays of index-
amplitude pairs, with a dynamically changing order. This ensures that threads access disjoint and

contiguous blocks, eliminating contention and requiring minimal synchronization (Section 4.1).

• New, easily parallelizable, highly scalable, and cache-friendly algorithms for all quantum opera-

tions. Figure 1 summarizes the asymptotic running times in the single and multi-threaded settings,

and compares them with the hash table based representation of [36] (Sections 4.2 and 4.3).

• An open-source implementation of qblaze of high quality. The implementation can be easily

integrated into SDKs via highly interoperable Python and C interfaces (Section 6).

• An experimental evaluation against different types of simulators on the QASMBench benchmark

suite [40], demonstrating that qblaze is competitive with the state of the art. Moreover, it is the

only simulator that handles the binary welded tree benchmark for 37 qubits (Section 6.1).

• We experimentally compare with the state-of-the-art sparse simulator of Jaques and Häner on

Shor’s algorithm, with two different types of adder circuits.
4
Even on a single core, qblaze is

sometimes 120× faster, on challenging problem instances (Section 6.2). At the same time, we

demonstrate that our simulator can scale linearly up to the 180 processor cores (Section 6.3).

2 Overview
In this section, we give an intuitive overview of qblaze, showing its operation on a simple example.

Readers unfamiliar with quantum notation can consult Section 3 first.

4
Our numbers for Jaques and Häner’s simulator are not comparable to what they originally reported due to variations in

the experimental setup.
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CCX[2,3,1]

𝑞1

𝑞2

𝑞3

Z[1]

H[2] X[2]

Fig. 2. A quantum circuit operating on three qubits 𝑞1, 𝑞2, 𝑞3 via a sequence of gates. Gate operations are
applied from left to right. We indicate the qubits on which each gate operates in square brackets. From the
gates, three operate on a single-qubit: the Hadamard H, the bit flip X, and the conditional sign flip Z. The
multi-qubit gate CCX applies a bit flip to 𝑞1 (the “target”) conditional on 𝑞2, and 𝑞3 (the “controls”) being set.
The gates are applied in groups as indicated by the vertical bars.

2.1 State Vector Simulation
As typical for state vector simulators, qblaze is implemented as an abstract data type that represents

the current state vector, with operations to apply quantum gates to the state vector, and to obtain

results of measurements. This way, the simulator can be treated as a quantum coprocessor whose

operation is driven by a classical program, following the QRAM model [39]. This permits programs

to freely interleave classical and quantum computation, a feature used in many quantum algorithms,

and supported by languages like Quipper [30], QWIRE [53], Q# [46], and Silq [13].

Supported operations. Our simulator natively supports three kinds of operations:

• Applying an arbitrary single-qubit gate (e.g., R𝑥 R𝑦 , R𝑧 , 𝑋 , H). These gates transform the

amplitudes in pairs whose indices differ only in the target qubit.

• Applying a phase/permutation gate (e.g., CCX, SWAP, R𝑧 , 𝑋 ). Such a gate first rotates each

amplitude by an angle that depends on the index; and then permutes the indices/amplitudes;

the gate can be implemented elementwise on the index-amplitude pairs.

• Measurement of a single qubit in the computational basis. The simulator samples a classical

value, and then it collapses the state vector to the basis state with that value.

Single-qubit and phase/permutation gates form a complete gate set, meaning that together with

measurement they are sufficient to express any quantum computation.

2.2 Sparse State Vectors
Consider the quantum circuit in Fig. 2. The circuit operates on 𝑛 = 3 qubits 𝑞1, 𝑞2, 𝑞3. An initial state

vector |𝜓 ⟩ is a linear combination of 2
𝑛
basis vectors |𝑖1𝑖2𝑖3⟩ and complex amplitudes𝜓𝑖1𝑖2𝑖3 ∈ C:

|𝜓 ⟩ = 𝜓000 · |000⟩ +𝜓001 · |001⟩ +𝜓010 · |010⟩ +𝜓011 · |011⟩
+𝜓100 · |100⟩ +𝜓101 · |101⟩ +𝜓110 · |110⟩ +𝜓111 · |111⟩.

Assume that we know that𝜓010 = 𝜓110 = 0. By leaving out the terms of zero amplitude, we obtain

a sparse representation of the state vector:

|𝜓 ⟩ = 𝜓000 · |000⟩ +𝜓001 · |001⟩ +𝜓011 · |011⟩
+𝜓100 · |100⟩ +𝜓101 · |101⟩ +𝜓111 · |111⟩.

Conceptually, we store a sorted array of pairs that consist of an index 𝑖1𝑖2𝑖3 and the corresponding

non-zero amplitude𝜓𝑖1𝑖2𝑖3 . (In practice, we use two sorted arrays of pairs, cf. Section 4.) For large
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𝜓000 |000⟩
𝜓010 |010⟩
𝜓011 |011⟩
𝜓100 |100⟩
𝜓101 |101⟩
𝜓111 |111⟩

𝑖2 = 0

𝑖2 = 1

𝜓000 |000⟩
𝜓100 |100⟩
𝜓101 |101⟩

𝜓010 |010⟩
𝜓011 |011⟩
𝜓111 |111⟩

1. partition

𝑖2 = 0 vs. 𝑖2 = 1

𝜓000 |000⟩
𝜓010 |010⟩

𝜓011 |011⟩

𝜓100 |100⟩

𝜓101 |101⟩
𝜓111 |111⟩

2. merge

<LSB(𝑞)

3. apply H

𝜓 ′
000

|000⟩
𝜓 ′
001

|001⟩
𝜓 ′
011

|011⟩
𝜓 ′
100

|100⟩
𝜓 ′
110

|110⟩
𝜓 ′
101

|101⟩
𝜓 ′
111

|111⟩

4. partition

𝑖2 = 0 vs. 𝑖2 = 1

𝑖2 = 0

𝑖2 = 1

𝜓 ′
000

|000⟩
𝜓 ′
001

|001⟩
𝜓 ′
100

|100⟩
𝜓 ′
101

|101⟩

𝜓 ′
011

|011⟩
𝜓 ′
110

|110⟩
𝜓 ′
111

|111⟩

5. merge

<

𝜓 ′
000

|000⟩
𝜓 ′
001

|001⟩
𝜓 ′
011

|011⟩
𝜓 ′
100

|100⟩
𝜓 ′
101

|101⟩
𝜓 ′
110

|110⟩
𝜓 ′
111

|111⟩

Fig. 3. Example of Hadamard gate application. The gate is applied to the second qubit of a three-qubit system.
Shaded regions correspond to partitions of the state vector. In the example, two non-zero amplitudes𝜓𝑖1𝑖2𝑖3 ,
and 𝜓 𝑗1 𝑗2 𝑗3 may interact only if 𝑖1 = 𝑗1, and 𝑖3 = 𝑗3. The possible interactions are illustrated by the arrows
in the middle of the figure: We illustrate the possible interactions between non-zero amplitudes with the
converging and diverging arrows in the center of the figure: two amplitudes turn into one, one amplitude turns
into two, and two amplitudes turn into two. The important feature of the sorted state vector reprsentation is
that interacting amplitudes are always situated next to each other in memory.

superpositions of 𝑛 qubits with many zero amplitudes, the sparse representation can be significantly

more space-efficient than the naive dense encoding that stores all 2
𝑛
complex amplitudes.

Advantages. Compared to the hash-table data structure used by Jaques and Häner [36], our

sorted sparse encoding has several advantages:

(1) The representation is compact and simple; there are no pointers, hashes and rehashing, or

large amounts of memory allocator metadata.

(2) For most operations, the array can be split into chunks that can be processed independently

in parallel; there is no need for complex and expensive synchronization.

(3) Large groups of amplitudes can be processed sequentially, which has low overhead and is

cache-friendly, compared to hash tables where memory accesses are effectively random.

Next, we show how gates are applied to our example state vector. We consider the sequence of

quantum gates of the circuit pictured in Fig. 2: H[2] ; CCX[2, 3, 1] ; X[2] ; Z[1].

2.3 Applying Single-Qubit Gates
Let us consider how to apply the Hadamard gate H[2], which transforms the second qubit of our 3

qubit system. The key insight is that we can group the amplitudes into pairs that transform together.

More specifically, for all 𝑖1 and 𝑖3, the pair {𝜓𝑖10𝑖2 ,𝜓𝑖11𝑖2 } is sent to the pair {𝜓 ′
𝑖10𝑖3

,𝜓 ′
𝑖11𝑖3

}:

𝜓 ′
𝑖10𝑖3

= 1√
2

𝜓𝑖10𝑖3 + 1√
2

𝜓𝑖11𝑖3 𝜓 ′
𝑖11𝑖3

= 1√
2

𝜓𝑖10𝑖3 − 1√
2

𝜓𝑖11𝑖3 .

We think of this transformation as an interaction between𝜓𝑖10𝑖3 and𝜓𝑖11𝑖3 .

The input state vector is encoded as an array of index-amplitude pairs that are sorted according to

the lexicographic ordering ⪯ of the indices. We picture this array as the first column of amplitudes

and basis states (indices) on the left in Fig. 3. The figure shows the five steps of applying the gate:

(1) The first step partitions the array into two: one part with all pairs having 𝑖2 = 0, followed

by another part with all pairs having 𝑖2 = 1. Importantly, the partition operation is stable,
meaning that elements with equal 𝑖2 preserve their relative ordering. The result is that both

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 288. Publication date: October 2025.
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𝜑1 |000⟩
𝜑2 |001⟩
𝜑3 |011⟩
𝜑4 |100⟩
𝜑5 |101⟩
𝜑6 |110⟩
𝜑7 |111⟩

apply

CCX[2, 3, 1]
𝜑1 |000⟩
𝜑2 |001⟩
𝜑3 |111⟩
𝜑4 |100⟩
𝜑5 |101⟩
𝜑6 |110⟩
𝜑7 |011⟩

apply

X[2]
𝜑1 |010⟩
𝜑2 |011⟩
𝜑3 |101⟩
𝜑4 |110⟩
𝜑5 |111⟩
𝜑6 |100⟩
𝜑7 |001⟩

apply

Z[1]
𝜑1 |010⟩
𝜑2 |011⟩

−𝜑3 |101⟩
−𝜑4 |110⟩
−𝜑5 |111⟩
−𝜑6 |100⟩
𝜑7 |001⟩

sort

𝜑7 |001⟩
𝜑1 |010⟩
𝜑2 |011⟩

−𝜑6 |100⟩
−𝜑3 |101⟩
−𝜑4 |110⟩
−𝜑5 |111⟩

Fig. 4. Example of applying a sequence of phase/permutation gates. The gates are applied to each element
independently, as indicated by the shaded regions. The X[𝑚] gate toggles qubit 𝑞𝑚 ; CCX[𝑘, 𝑙,𝑚] toggles 𝑞𝑚
provided that 𝑞𝑘 , and 𝑞𝑙 are set; Z[𝑚] inverts the sign of the amplitude when 𝑞𝑚 is set. A final sorting step
restores the correct order of amplitudes for further processing.

parts are sorted not only lexicographically, but also according to the modified lexicographic

ordering ⪯LSB(2) , where the second bit of 𝑖1𝑖2𝑖3 is considered the least significant:

𝑖1𝑖2𝑖3 ⪯LSB(2) 𝑗1 𝑗2 𝑗3 ≜ 𝑖1𝑖3𝑖2 ⪯ 𝑗1 𝑗3 𝑗2.

(2) The second step merges the two parts into a single array that is sorted according to ⪯LSB(2) .
According to this ordering, the interacting amplitudes would be adjacent in the sorted array.

(3) The third step applies the gate by going over all interacting amplitudes and transforming

them accordingly. Because we ensured that interacting amplitudes are adjacent, we not only

achieve excellent spatial locality, but we also ease parallelization: We divide the array into

chunks of interacting amplitudes, and then we transform the chunks in parallel.

(4) The fourth step is again a partition step, but this time of the transformed array. The partition

guarantees that each of the parts is sorted according to the original lexicographic ordering ⪯.
(5) The fifth step merges the two parts into a single array sorted according to ⪯. The point is to

restore the original ordering, which prepares the state for applying more gates.

The full algorithm (Section 4) actually contains a further optimization that fuses consecutive
merge-apply-partition steps into a single pass over the array. The fusion reduces the number of

passes per gate from 5 to 2. However, the state vector between applications now has to be stored as

a pair of sorted arrays (the shaded regions in Fig. 3), instead in a single one.

2.4 Applying Phase/Permutation Gates

A phase/permutation gate sends each basis vector |𝑖⟩ to the state vector 𝑒𝑖𝜃 (𝑖 ) |𝑓 (𝑖)⟩, where the
angle 𝜃 (𝑖) is a function of the index, and 𝑓 is a permutation of the indices, Accordingly, each

index-amplitude pair in the sorted array must be transformed as follows:

(𝑖,𝜓𝑖 ) ↦→ (𝑓 (𝑖), 𝑒𝑖𝜃 (𝑖 )𝜓𝑖 ).
This transformation can be done elementwise in parallel for an arbitrary sequence of phase/per-

mutation gates (kept in a queue), as illustrated in Fig. 4. Parallelization is easy because there is

absolutely no interaction between the amplitudes, as also observed by Jaques and Häner [36].

However, applying the sequence of phase/permutation gates destroys the sorting of the ampli-

tudes. Thus, before applying the next single-qubit gate, we need to restore the sorting. In general

we do that with a parallel quicksort algorithm, but sometimes a sort can be avoided altogether. For
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qblaze: An Efficient and Scalable SparseQuantum Simulator 288:7

example, if only phase gates are present, then the indices are not permuted and nothing further

needs to be done. Another case is when all the phase/permutation gates in the sequence update

the same qubit 𝑞. In this situation, we can restore the sorting order as we did in the single-qubit

case: One partition followed by one merge sorts the vector according to ⪯LSB(𝑞) , and then another

partition followed by another merge restores the original lexicographic order.

While this approach based on sorted arrays has a worse asymptotic performance than the hash-

table based method of Jaques and Häner [36], it is easier to parallelize and has much better spatial

locality, leading to better cache utilization and better performance overall.

2.5 Simulating Measurements
We also support measurement, with a stochastic or fixed outcome. Measurement is performed in

stages: We first compute the probabilities of each outcome, then we sample the outcome, before

discarding the elements that do not match the sampled result and renormalizing the state vector.

3 State Vectors,Quantum Gates, and Sparse Encodings (Preliminaries)
We next review some basics of quantum computing, and sparse state vectors encodings, focusing

on formulas for gate application. The reader may consult Nielsen and Chuang [50] for more on

quantum computing. We assume familiarity with classical parallel algorithms, for which we direct

the reader to the 4th edition of CLRS [20].

3.1 State Vectors
The state of a 𝑛-qubit system is represented by 2

𝑛
complex amplitudes 𝜓 𝑖 ∈ C, one per bit string

𝑖 = 𝑖1 . . . 𝑖𝑛 ∈ {0, 1}𝑛 , satisfying the identity

∑
𝑖 |𝜓 𝑖 |2 = 1. For example, a state of a system that

consists of 3 qubits can be described by 8 bit-string indexed amplitudes:

𝜓000, 𝜓001, 𝜓010, 𝜓011, 𝜓100, 𝜓101, 𝜓110, 𝜓111 .

The amplitudes𝜓 𝑖 encode the probabilities |𝜓 𝑖 |2 for registering every possible outcome 𝑖 in case

the system is measured. When this happens, the system state collapses to a basis state |𝑖⟩, i.e., a state
left intact if the measurement is repeated. It follows that the system state is in fact represented by a

unit vector |𝜓 ⟩ that is a linear combination, or a superposition, of the possible basis states:

|𝜓 ⟩ =
∑︁

𝑖∈{0,1}𝑛
𝜓 𝑖 |𝑖⟩. (1)

Below are some examples of 1-qubit and 2-qubit basis states and superpositions of basis states:

|0⟩, |1⟩, 1√
2

|0⟩ + 1√
2

|1⟩ |00⟩, |11⟩, 1√
2

|00⟩ + 1√
2

|11⟩.

Besides by measurements, a systems can also be transformed by invertible linear operators 𝑈

that map state vectors to state vectors |𝜓 ′⟩ = 𝑈 |𝜓 ⟩. Such operators are called unitary. A unitary

transformation is naturally represented by an 𝑛 × 𝑛 unitary matrix with complex entries:

𝜓 ′
𝑖
=

∑︁
𝑗∈{0,1}𝑛

𝑈𝑖, 𝑗𝜓 𝑗 𝑈𝑈 † = 𝐼 𝑈 †𝑈 = 𝐼 . (2)

An example of a unitary operator is the Hadamard operator H, whose matrix is
1√
2

[
1 1

1 −1
]
.

Not all state vectors represent distinct physical states. More specifically, the state vectors |𝜓 ⟩
and 𝑒𝑖𝜃 |𝜓 ⟩ represent the same physical state, e.g., −|0⟩ and |0⟩. The reason is that the two cannot

be discerned by an arbitrary unitary transformation followed by a measurement. Indeed, the state

vectors |𝜓 ⟩ and 𝑒𝑖𝜃 |𝜓 ⟩ always remain related by the phase factor 𝑒𝑖𝜃 after a unitary transformation,

and the phase factor does not affect the measurement probabilities in any way.
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3.2 Quantum Gates
Unitary operators can also be applied to subsystems of the whole system. To describe how this

affects the whole system, suppose that there are𝑚 + 𝑛 qubits in total, and that we would like to

transform 𝑛 of them using𝑈 . We partition the qubit identifiers 1, 2, . . . ,𝑚 + 𝑛 into two lists,

𝑄̃ = [𝑞1 < · · · < 𝑞𝑚] 𝑄 = [𝑞1, . . . , 𝑞𝑛] . (3)

namely, the qubits 𝑞𝑖 ∈ 𝑄̃ outside the subsystem, and the qubits 𝑞𝑖 ∈ 𝑄 inside the subsystem. The

partition determines the binary operation 𝑟 ∗𝑄 𝑖 that interleaves an𝑚-bit string with an 𝑛-bit string:

𝑖1𝑖2 . . . 𝑖𝑚+𝑛 =
(
𝑖𝑞̃1 . . . 𝑖𝑞̃𝑚

)
∗𝑄

(
𝑖𝑞1 . . . 𝑖𝑞𝑛

)
. (4)

The transformation of the whole system is then given by the equation

𝜓 ′
𝑟∗𝑄 𝑖

=
∑︁

𝑗∈{0,1}𝑛
𝑈𝑖, 𝑗𝜓𝑟∗𝑄 𝑗 . (5)

We call the unitary operator𝑈 [𝑞1, . . . , 𝑞𝑛] that captures this transformation a gate, following the
convention in quantum computing. An important instance is when 𝑛 = 1, i.e., when𝑈 operates on

a single qubit. In this case (𝑖𝑞̃1 . . . 𝑖𝑞̃𝑚 ) ∗{𝑞} 𝑖𝑞 = 𝑟𝑖𝑞𝑠 , and the gate𝑈 [𝑞] transforms the system as

𝜓 ′
𝑟𝑖𝑠

=
∑︁

𝑗∈{0,1}
𝑈𝑖, 𝑗𝜓𝑟 𝑗𝑠 . (6)

For example, the single-qubit Hadamard gate H[𝑞] expresses the transformation

𝜓 ′
𝑟0𝑠

= 1√
2

𝜓𝑟0𝑠 + 1√
2

𝜓𝑟1𝑠 𝜓 ′
𝑟1𝑠

= 1√
2

𝜓𝑟0𝑠 − 1√
2

𝜓𝑟1𝑠 .

A subsystem𝑄 can also be transformed by𝑈 upon a condition on a group of qubits 𝑐1, . . . , 𝑐𝑙 ∉ 𝑄 ,

called the controls; typically, the condition is “being in the 1 state”:

𝜓 ′
𝑟∗𝑄 𝑖

=

{∑
𝑗∈{0,1}𝑛 𝑈𝑖, 𝑗𝜓𝑟∗𝑄 𝑗 if 𝑟𝑐1 . . . 𝑟𝑐𝑙 = 1 . . . 1,

𝜓𝑟∗𝑄 𝑖 otherwise.
(7)

This transformation is captured by the controlled gate C𝑙𝑈 [𝑐1, . . . , 𝑐𝑙 , 𝑞1, . . . , 𝑞𝑛]. For example, the

operator X, where X|0⟩ = |1⟩ and X|1⟩ = |0⟩, can be turned into the singly controlled gate:

|1𝑖20⟩
CX[1,3]
↦−−−−−→ |1𝑖21⟩ |1𝑖21⟩

CX[1,3]
↦−−−−−→ |1𝑖20⟩ |0𝑖2𝑖3⟩

CX[1,3]
↦−−−−−→ |0𝑖2𝑖3⟩.

3.3 Sparse Encodings and Divide-Apply-Unite
To simulate gate application (5) we need a suitable data structure that encodes the state vector in

computer memory. A sparse encoding of the state vector implements a basic form of compression

that records only the non-zero amplitudes. Conceptually, we can think of it as a data structure that

encodes an indexed set of amplitudes, that is, a mapping from indices to amplitudes:

Ψ = {𝜓𝑖 }𝑖∈𝐼 . (8)

Naturally, an indexed set can be implemented in many ways, for example:

• A contiguous array that records all index-amplitude pairs in some undetermined order:

(𝑖,𝜓𝑖 ) ( 𝑗,𝜓 𝑗 ) (𝑘,𝜓
𝑘
) · · · (9)
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• A hash table, i.e., an array, possibly with empty cells, that keeps each pair (𝑖,𝜓𝑖 ) at one of
several possible positions determined by hash functions ℎ1, ℎ2, ℎ3, . . . of the indices:

· · · ( 𝑗,𝜓 𝑗 ) · · · (𝑖,𝜓𝑖 ) · · · (𝑘,𝜓
𝑘
) · · ·

↑ ↑ ↑
ℎ1 ( 𝑗) ℎ1 (𝑖) ℎ3 (𝑘)

(10)

The question is how to support the efficient computation of (5). For that, we need to decompose

the computation into simpler steps; depending on how we do that, different data structures will be

more or less suitable. We shall work with the following decomposition:

Divide the given indexed set Ψ into groups of amplitudes that are combined together in (5):

𝐸𝑟 ≜
{
𝜓𝑟∗𝑄 𝑖 ∈ Ψ

}
𝑟∗𝑄 𝑖∈𝐼

. (11)

Apply the unitary𝑈 to combine the grouped amplitudes, producing transformed amplitudes (5):

𝑈 [𝑄]𝐸𝑟 = 𝐸′
𝑟
≜

{
𝜓 ′
𝑟∗𝑄 𝑖

: 𝜓 ′
𝑟∗𝑄 𝑖

≠ 0

}
. (12)

Unite the groups of transformed amplitudes to form the new indexed set:

Ψ′ =
⋃
𝑟

𝐸′
𝑟
. (13)

In the next section we shall present our main contribution, a particular sparse encoding that is

designed to support these stages efficiently on current multi-core (classical) computers.

4 A Sparse Encoding, Algorithms, and Parallelization
When designing a sparse encoding we had two main goals in mind: (i) the encoding should possess

good spatial locality, and (ii) scalable parallelization should be possible with a very simple and

lightweight synchronization. We adopted these design goals to address the shortcomings of hash-

table based encodings (10), e.g., used by Jaques and Häner [36], as hash-tables possess bad spatial

locality, and require complicated synchronization to scale well.

The starting point for our design is the scenario where a gate 𝑈 [𝑞] transforms the “last” qubit 𝑞.

That is, in (3) 𝑛 = 1 and 𝑞 = 𝑚 + 1. We can easily carry out this application if the indexed-set Ψ
(8) is encoded as a contiguous array of index-amplitude pairs (9) sorted lexicographically by the

indices. Each group (11) will consist of at most two elements, who will lie next to each other in

the array. Therefore, if we distribute the groups into 𝑝 subarrays, then the apply stage (12) can

be carried out by 𝑝 parallel tasks. This meets both of our design goals because the tasks access

contiguous memory, and require only barriers to synchronize between stages.

In Section 2.3 we discussed how this scheme extends to the case when 𝑞 is not the last qubit.

We proceeded along the same lines, except that we temporarily sort the array in the order ⪯LSB(𝑞)
where 𝑞 is considered last. We saw that this can be done in five passes over the array: a partition, a

merge, the gate application stage, and then again a partition, and a merge.

While this approach is efficient compared to employing a complete sorting algorithm, we shall

achieve the same effect with only two passes. The idea is that consecutive merge-apply-partition

operations can be fused into a single pass over the memory. We shall use this fused operation as

the primitive to express gate application; the result is the following sequence of passes:

partition,merge, apply, partition,merge partition,merge, apply, partition,merge︸                       ︷︷                       ︸
single pass

︸                   ︷︷                   ︸
single pass

︸                       ︷︷                       ︸
single pass

(14)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 288. Publication date: October 2025.



288:10 Hristo Venev, Thien Udomsrirungruang, Dimitar Dimitrov, Timon Gehr, and Martin Vechev

The pass in the middle is a merge-apply-partition operation that applies the identity gate. This does

not change the state vector, but merely reencodes it in a form suitable for the next transformation,

which actually applies the gate. This way a gate application requires only 2 memory passes.

4.1 Data Structure
Using merge-apply-partition as a primitive means that we encode Ψ as the pair of sorted arrays

produced during partitioning and consumed during merging. However, in order to identify the

precise invariants of this data structure, it is both more convenient and more illuminating to go

beyond the single-qubit case, and describe a data structure suitable for arbitrary gates𝑈 [𝑄]. We do

this merely as a presentation device; in practice, we only use the special case where 𝑁 = 1 below.

Organization. Given a fixed subsystem𝑄 = [𝑞1, . . . , 𝑞𝑛] and 𝑁 ≥ 𝑛, the data structure consists of

an array 𝑆 that references 2
𝑁
arrays of index-amplitude pairs, the parts of 𝑆 , through the pointers

𝑆 [𝑘] 𝑘 ∈ {0, 1}𝑁 . (15)

Each of the pointers 𝑆 [𝑘] is “fat” in the sense that it also contains two additional attributes

𝑆 [𝑘] .head 𝑆 [𝑘] . tail, (16)

that indicate respectively the first and the last position in the referenced array that contain data

encoded by 𝑆 . The data structure 𝑆 also has an extra attribute that indicates the subsystem 𝑄 :

𝑆. subsystem = 𝑄. (17)

An instance 𝑆 may share the underlying arrays with other instances. This capability will serve

us various purposes: to represent a slice of a larger collection of index-amplitude pairs; to represent

a queue of index-amplitude pairs; to make cheap shared copies of an instance.

Invariants. A pair may appear only in one 𝑆 [𝑘], so the non-empty parts of 𝑆 partition the set

set(𝑆) = {(𝑖,𝜓 ) : ∃𝑘 : (𝑖,𝜓 ) ∈ 𝑆 [𝑘]}. (18)

The pairs in each 𝑆 [𝑘] must be sorted according to the following ordering of the indices:(
𝑟 ∗𝑄 𝑖

)
⪯𝑄

(
𝑠 ∗𝑄 𝑗

)
≜ 𝑟 ⪯ 𝑠 . (19)

We actually require the stronger property that for all 𝑆 [𝑘] [𝑎] = (𝑟 ∗𝑄 𝑖,𝜓 ), and 𝑆 [𝑘] [𝑏] = (𝑠 ∗𝑄 𝑗,𝜓 )

𝑎 ≤ 𝑏 ⇐⇒ 𝑟 ⪯ 𝑠 . (20)

So two pairs with 𝑟 = 𝑠 cannot appear at distinct positions in the same part. Thus, if furthermore

(𝑟 ∗𝑄 𝑖,𝜓 ) ∈ 𝑆 [𝑘] =⇒ 𝑖 = 𝑘, (21)

for all 𝑘 , then all the arrays 𝑆 [𝑘] must actually be ⪯𝑄 ′ -sorted for any 𝑄 ′ ⊆ 𝑄 .

4.2 Applying Single-Qubit Gates
We shall present both sequential and parallel algorithms for the merge-apply-partition operation,

respectively implemented as the Transform and the P-Transform procedures. The algorithms

have the same interface, except for the fact that the parallel one works only for single-qubit gates.

Depending on which of the two procedures we invoke, we obtain either a parallel or a sequential

algorithm for applying gates. Sequential gate application looks as follows:
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Apply-Gate(𝑆,𝑈 ,𝑄)
1 // assume (21) w.r.t. 𝑆. subsystem
2 if 𝑄 ≠ 𝑆. subsystem
3 𝑆 ≔ Transform(𝑆, I,∅, 𝑄)
4 return Transform(𝑆,𝑈 ,𝑄,𝑄)

The three arguments are: the system state 𝑆 to be transformed, the unitary𝑈 to be applied, and

the subsystem 𝑄 to which the unitary is applied. Apply-Gate requires 𝑆 to satisfy (21), which

ensures that the parts of 𝑆 are sorted according to ⪯∅, that is, lexicographically. The stricter ordering
is needed by the first (conditional) invocation of Transform, which reencodes the system state by

applying the identity unitary I to the empty subsystem. The fourth argument of the call indicates

the subsystem according to which the reencoded state should be partitioned. We set this to be the

subsystem 𝑄 to which we are applying𝑈 . After this has been ensured, we can proceed with the

second call to Transform, which performs the application.

4.2.1 Sequential Transform. The left side of Fig. 5 shows the pseudocode for Transform. The
procedure first creates a copy of the state 𝑆 . We let the pointers in the copy refer to the original

arrays, which is safe because we will only modify the head attributes, and not the arrays themselves,

thus using the copy as a queue. The procedure then makes the data structure 𝑆 ′ that will hold the

transformed state partitioned according to 𝑄 ′
. After that, it executes a loop for the divide-apply-

unite pattern (11–13) until the queue has been exhausted. The call to Merge-Group dequeues a

group 𝐸 of index-amplitude pairs from 𝑆 (divide); then, the group is transformed by 𝑈 (apply);

finally, the transformed group 𝐸′
is enqueued to 𝑆 ′ by a call to the Partition-Group (unite).

For this to work, the subsystem 𝑄 must be a subset of 𝑆. subsystem, and the parts of the input

state 𝑆 must be ⪯𝑄 -sorted. This ensures that Merge-Group dequeues exactly the groups 𝐸 to which

the unitary 𝑈 has to be applied. Furthermore, the subsystem 𝑄 must be a subset of 𝑄 ′
so that the

transformed groups 𝐸′
are compatible with 𝑄 ′

, and also that they are given to Partition-Group

in the correct order to guarantee that 𝑆 ′ satisfies the invariant (20). In turn, the partition procedure

ensures the property (21), which is required by the Apply-Gate procedure.

Cost Analysis. For the cost analysis, we assume that the sizes of 𝑄 , 𝑄 ′
, and 𝑆. subsystem are upper

bounded by constants, and similarly for the number of arrays in 𝑆 . In the actual implementation,

the lists 𝑄 , 𝑄 ′
, and 𝑆. subsystem contain at most 1 qubit, and 𝑆 contains exactly 2 arrays.

Let us first take a look at Transform in Fig. 5. Let 𝑛 = Size(𝑆), i.e., the total number of elements

in all arrays of 𝑆 . The total number of iterations is 𝑂 (𝑛) because in each iteration Merge-Group

dequeues at least one element. The calls to Merge-Group are 𝑂 (1), as each inspects one element

per part of 𝑆 . The calls to Partition-Group are also𝑂 (1) because |𝐸′ | ≤ 2
|𝑄 |

is constant. Therefore,

the total runtime is 𝑂 (𝑛).
For the number of cache misses, we need to consider the access pattern of the arrays of 𝑆 and 𝑆 ′.

Repeated invocation of Merge-Group reads 𝑆 [𝑘] [𝑆 [𝑘] .ℎ𝑒𝑎𝑑] and advances 𝑆 [𝑘] .ℎ𝑒𝑎𝑑 sequentially.

Similarly, repeated invocation of Partition-Group appends elements at the tail of 𝑆 ′ [𝑖], thus
writing to consecutive memory locations. A constant cache size is sufficient to ensure that each

cache line located in the parts of 𝑆 and 𝑆 ′ is read and written at most once. Therefore, there are

most 𝑂 ( 𝑛
𝐵
) cache misses, where 𝐵 equals the size of a cache line.

4.2.2 Parallel Transform. The right side of Fig. 5 shows the pseudocode for P-Transform. Most of

the pseudocode is dedicated to splitting the input and output states into chunks, and it works only

for input states that contain at most two parts. We shall consider only the case of 𝑆 having exactly

two parts, 𝑆 [0], and 𝑆 [1], as the other case is trivial.
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Transform(𝑆,𝑈 ,𝑄,𝑄 ′)
1 // assume 𝑄 ⊆ 𝑆. subsystem and 𝑄 ⊆ 𝑄 ′

2 // assume 𝑆 is ⪯𝑄 -sorted
3 𝑆 ≔ Shared-Copy-State(𝑆)
4 𝑆 ′ ≔ Make-State(𝑄 ′, |𝑄 ′ |)
5 while (𝐸 ≔ Merge-Group(!𝑆,𝑄)) ≠ ∅
6 𝐸′ ≔ 𝑈 [𝑄] 𝐸
7 Partition-Group(!𝑆 ′, 𝐸′)
8 return 𝑆 ′

Partition-Group(!𝑆, 𝐸)
1 𝑄 ≔ 𝑆. subsystem
2 // assume ∀(𝑠 ∗𝑄 _, _) ∈ 𝐸 :

3 // ∧ ∀(𝑟 ∗𝑄 _, _) ∈ 𝐸 : 𝑟 = 𝑠

4 // ∧ ∀(𝑟 ∗𝑄 _, _) ∈ set(𝑆) : 𝑟 ⪯ 𝑠

5 for each pair (𝑟 ∗𝑄 𝑖,𝜓 ) ∈ 𝐸

6 𝑆 [𝑖] . tail ≔ 𝑆 [𝑖] . tail + 1

7 𝑆 [𝑖] [𝑆 [𝑖] . tail] ≔ (𝑟 ∗𝑄 𝑖,𝜓 )
Merge-Group(!𝑆,𝑄)
1 // assume 𝑄 ⊆ 𝑆. subsystem
2 // assume 𝑆 is ⪯𝑄 -sorted
3 𝐻 ≔

{
(𝑘, 𝑆 [𝑘] [𝑆 [𝑘] .head]) :

𝑆 [𝑘] .head ≤ 𝑆 [𝑘] . tail
}

4 𝑀 ≔

{(
_, (𝑟 ∗𝑄 _, _)

)
∈ 𝐻 :

∀
(
_, (𝑠 ∗𝑄 _, _)

)
∈ 𝐻 : 𝑟 ⪯ 𝑠

}
5 for each pair (𝑘, _) ∈ 𝑀

6 𝑆 [𝑘] .ℎ𝑒𝑎𝑑 ≔ 𝑆 [𝑘] .ℎ𝑒𝑎𝑑 + 1

7 return {𝑒 : (_, 𝑒) ∈ 𝑀}

P-Transform(𝑆,𝑈 ,𝑄,𝑄 ′)
1 // assume 𝑄 ⊆ 𝑆. subsystem and 𝑄 ⊆ 𝑄 ′

2 // assume 𝑆 is ⪯𝑄 -sorted
3 // assume 𝑆 has at most two parts

4 𝑛 ≔ Size(𝑆)
5 // find split points for 𝑆

6 let SP [0 :𝑝] be a new array

7 parallel for 𝜄 ≔ 0 to 𝑝

8 SP [𝜄] ≔ Find-Strict-Split-Point(𝑆, ⪯𝑄 , ⌊𝜄 𝑛𝑝 ⌋)
9 // split 𝑆 into chunks

10 let CH [1 :𝑝] be a new array

11 parallel for 𝜄 ≔ 1 to 𝑝

12 CH [𝜄] ≔ Slice-State(𝑆, SP [𝜄 − 1] + 1, SP [𝜄])
13 // find chunk sizes for 𝑆 ′

14 let SZ ′ [1 :𝑝] be a new array

15 parallel for 𝜄 ≔ 1 to 𝑝

16 SZ ′ [𝜄] ≔ Trial-Transform(CH [𝜄],𝑈 ,𝑄,𝑄 ′)
17 // find split points for 𝑆 ′

18 let SP′ [0 :𝑝] be a new array

19 P-Prefix-Sum(SZ ′, !SP′)
20 // make 𝑆 ′

21 𝑆 ′ ≔ Make-State(𝑄 ′, |𝑄 ′ |, SP′ [𝑝])
22 // split 𝑆 ′ into chunks

23 let CH ′ [1 :𝑝] be a new array

24 parallel for 𝜄 ≔ 1 to 𝑝

25 CH ′ [𝜄] ≔ Slice-State(𝑆 ′, SP′ [𝜄 − 1] + 1, SP′ [𝜄])
26 // transform each chunk in parallel

27 parallel for 𝜄 ≔ 1 to 𝑝

28 Transform-To(𝐶𝐻 [𝜄],𝑈 ,𝑄, !𝐶𝐻 ′ [𝑖])
29 return 𝑆 ′

Fig. 5. Algorithms for merge-apply-parition. Transform is the sequential algorithm, and P-Transform is
the parallel one. We prefix invocation arguments with ! when the invocation may modify their contents.
For brevity, the sequential version omits the dynamic resizing of 𝑆 ′, which is required to accomodate newly
enqueued items. In the parallel version, the parameter 𝑝 indicates how many chunks are processed in parallel.

The key concept we need is that of a split point sp. It consists of a pair of positions sp[0] in 𝑆 [0]
and sp[1] in 𝑆 [1] that respectively split the parts into a prefix and a suffix such that all elements in

the prefixes are ⪯𝑄 than those in the suffixes. Or more formally, for all 𝑘, 𝑙 ∈ {0, 1}(
∀(𝑟 ∗𝑄 𝑖,𝜓 ) ∈ 𝑆

[
𝑘
] [
𝑆 [𝑘] .head : sp[𝑘]

]
∀(𝑠 ∗𝑄 𝑗, 𝜑) ∈ 𝑆

[
𝑙
] [
sp[𝑙] + 1 : 𝑆 [𝑙] . tail

] ) : 𝑟 ⪯ 𝑠 . (22)

The rank of the split point is the combined length of the prefixes. There exists at least one split

point of every rank 𝑟 from 0 up to the number 𝑛 of index-amplitude pairs in 𝑆 . To obtain one, we

can start merging the two parts, and count how many elements from each we have taken so far;

when we reach 𝑟 elements in total, we have found our split point. But the much faster method, the

one we employ, is by binary search in the sorted parts: If in (22) 𝑟 ⪯̸ 𝑠 , then we know that we have
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to increase sp[𝑙] and decrease sp[𝑘]; to do that, we keep track of the feasible range of values for

each component of sp, and we halve those ranges in the corresponding direction.

Now, to split 𝑆 into 𝑝 nearly equal chunks, we can find 𝑝 + 1 split points SP [𝜄]𝜄=0...𝑝 each having

respective rank ⌊𝜄 𝑛
𝑝
⌋. Then, the 𝜄th chunk CH [𝜄] of 𝑆 will consist of the parts

CH [𝜄] [0] = 𝑆 [0] [SP [𝜄 − 1] [0] + 1 : SP [𝜄] [0]] (23)

CH [𝜄] [1] = 𝑆 [1] [SP [𝜄 − 1] [1] + 1 : SP [𝜄] [1]] . (24)

Here, however, we hit a minor complication. It might happen that some of the groups (11) that

we must transform with 𝑈 is split between two consecutive chunks. To prevent that, we actually

search for strict split points, that is, split points for which 𝑟 ≺ 𝑠 in (22). We search for a strict split

point by finding a possibly non-strict split point sp first. Now, the invariant (20) guarantees that

both parts 𝑆 [0] and 𝑆 [1] are sorted in a strictly increasing order. It follows that sp may fail to be

strict in only two possible ways, both of which are easily corrected by reducing the rank by 1:

𝑆 [0] [sp[0]] = (𝑟 ∗𝑄 𝑖,𝜓 ) and 𝑆 [1] [sp[1] + 1] = (𝑟 ∗𝑄 𝑗, 𝜑) =⇒ [sp[0] − 1, sp[1]] is strict (25)

𝑆 [1] [sp[1]] = (𝑟 ∗𝑄 𝑖,𝜓 ) and 𝑆 [0] [sp[0] + 1] = (𝑟 ∗𝑄 𝑗, 𝜑) =⇒ [sp[0], sp[1] − 1] is strict (26)

After these preparations, we return to P-Transform. First, 𝑝 + 1 strict split points of 𝑆 are found.

They are used to slice 𝑆 into 𝑝 input chunks CH [𝜄]𝜄=1...𝑝 . The underlying arrays are shared to avoid

any copying overhead. Next, P-Transform performs a trial transformation of every input chunk

in order to find out how large would each part of the corresponding output chunk be. This is

similar to Transform, but instead of recording the output index-amplitude pairs, a counter for the

corresponding part is incremented. The resulting pairs of sizes are stored in SZ ′ [𝜄]𝜄=1...𝑝 . A parallel

prefix sum (see, e.g., [20]) over the sizes yields the 𝑝 + 1 split points SP ′ [𝜄]𝜄=0...𝑝 of the output 𝑆 ′.
Then, the output 𝑆 ′ is allocated and sliced into output chunks. Finally,𝑈 is applied to each input

chunk by calls to Transform-To. This procedure is the same as Transform except that it does not

allocate its own output data structure, but it receives the data structure as an argument.

Cost Analysis. For the cost analysis of P-Transform, we investigate the individual steps.

(1) The 𝑝 applications of Find-Strict-Split-Points. Each runs in 𝑂 (log𝑛) time and performs

at most 𝑂 (log𝑛) memory operations. They are performed in parallel, so the contribution to

the total cost is 𝑂 (log𝑛) time and 𝑂 (log𝑛) cache.
(2) Slice-State and Make-State are 𝑂 (1).
(3) The 𝑝 applications of Trial-Transform. Each is given a slice of at most

⌈
𝑛
𝑝
+ 1

⌉
< 𝑛

𝑝
+ 2

elements, and all 𝑝 are performed in parallel, so the total cost is 𝑂 ( 𝑛
𝑝
) time and 𝑂 ( 𝑛

𝐵𝑝
) cache.

(4) The call to P-Prefix-Sum. It runs in 𝑂 (log𝑛) time and cache.

(5) The 𝑝 calls to Transform-To have the same cost as Trial-Transform.

Thus, the total running time is 𝑂 ( 𝑛
𝑝
+ log𝑛) with 𝑂 ( 𝑛

𝐵𝑝
+ log𝑛) cache misses.

4.3 Applying Sequences of Phase/Permutation Gates
For phase/permutation gates the formula (5) simplifies dramatically, allowing for a specialized

gate application algorithm that can efficiently handle such gates on an arbitrary number of qubits.

Recall that a phase/permutation gate𝑈 [𝑄] is characterized by an angle-valued function 𝜃 , together

with a permutation 𝑓 such that any basis state | 𝑗⟩ maps to 𝑈 [𝑄] | 𝑗⟩ = 𝑒𝑖𝜃 ( 𝑗 ) |𝑓 ( 𝑗)⟩. Equivalently,
the gate’s matrix has exactly one non-zero unit number in every row and in every column.
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P-Phase/Permute-Part(!𝑃,𝐺)
1 𝑛 ≔ 𝑃 . tail − 𝑃 .head + 1

2 // number of chunks per processor

3 //𝑀 is the cache size

4 𝑏 ≔

⌈
𝑛
𝑝𝑀

⌉
5 // calculate chunk boundaries

6 let BD[0 :𝑝] be a new array

7 parallel for 𝜄 ≔ 0 to 𝑏𝑝
8 BD[𝜄] ≔ 𝑃 .head + ⌊𝜄 𝑛

𝑏𝑝
⌋ - 1

9 // transform each chunk in parallel

10 parallel for 𝜄 ≔ 1 to 𝑏𝑝
11 for each gate𝑈 [𝑄] ∈ 𝐺

12 for 𝑙 ≔ BD[𝜄 − 1] + 1 to BD[𝜄]
13 ( 𝑗,𝜓 ) ≔ 𝑃 [𝑙]
14 let𝑈 [𝑄]

𝑖, 𝑗
≠ 0

15 𝑃 [𝑙] ≔ (𝑖,𝑈 [𝑄]
𝑖, 𝑗
𝜓 )

P-Phase/Permute(!𝑆,𝐺)
1 // assume (21)

2 // assume 𝑆 has two parts

3 𝑄 ≔ {𝑞 : some gate in 𝐺 modifies 𝑞}
4 // prepare
5 if |𝑄 | = 1 and 𝑆. subsystem ≠ 𝑄

6 𝑆 ≔ P-Transform(𝑆, I,∅, 𝑄)
7 // transform

8 parallel for each 𝑘 ∈ {0, 1}
9 P-Phase/Permute-Part(!𝑆 [𝑘],𝐺)
10 // recover
11 if |𝑄 | = 1

12 𝑆 ≔ P-Transform(𝑆, I, 𝑄,𝑄)
13 if |𝑄 | > 1

14 𝑆. subsystem ≔ 𝑆. subsystem \𝑄
15 parallel for each 𝑘 ∈ {0, 1}
16 𝑆 [𝑘] ≔ P-Sort(𝑆 [𝑘], ⪯)
17 return 𝑆

Fig. 6. Algorithm for applying phase/permutation gates.

This gives us the following method for applying𝑈 [𝑄] to an indexed set Ψ = {𝜓 𝑗 } 𝑗∈ 𝐽 : For every
amplitude𝜓 𝑗 ∈ Ψ, we determine the column 𝑖 for which the matrix entry𝑈 [𝑄]𝑖, 𝑗 is non-zero; we
calculate the amplitude𝜓 ′

𝑖
= 𝑈 [𝑄]𝑖, 𝑗𝜓 𝑗 , which we then add to the output indexed set Ψ′

.

The method is very easily parallelizable when the indexed set is encoded as a contiguous array of

index-amplitude pairs (9): We simply divide the array into chunks among 𝑏𝑝 parallel tasks, and let

every task perform the above calculation in-place. The number of tasks per processor 𝑏 is chosen

so that each task fits in cache, meaning that each chunk is loaded once, processed entirely in cache,

and stored once. In our case, the state encoding 𝑆 consists of multiple such arrays, and we use

this method as the procedure P-Phase/Permute-Part, with pseoudocode shown on the left in

Fig. 6. The procedure receives the pointer 𝑃 of the respective part of 𝑆 , as well as a sequence 𝐺 of

phase/permutation gates to be applied.

Applying a sequence of phase/permutation gates to the parts of 𝑆 might destroy the ordering

invariant (20). That is why after the application we have to restore the invariant, for which we use

different recovery strategies, depending on the qubits modified by the gates in 𝐺 :

• If no gates are modified, then (20) is preserved, and no recovery is needed.

• If only a single qubit is modified, then we can recover with P-Transform.

• If more than one qubit is modified, then we need to perform a complete sort of the parts.

Pseudocode for applying phase/permutation gates is shown on the right in Fig. 6. The procedure

P-Phase/Permute recives the state 𝑆 to be transformed, and the sequence 𝐺 of gates to be applied.

The result might either be a newly allocated state, or it might coincide with its argument 𝑆 modified

in-place, depending on the recovery strategy used. The procedure has three stages. The preparation

stage checks whether only one qubit has been modified. If this is so, it will perform the second

recovery stage later, for which it has to ensure that 𝑆 is partitioned according to the modified

qubit, similarly to what happens in Apply-Gate; that is why 𝑆 has been assumed to satisfy (21).

The transformation stage simply invokes P-Phase/Permute-Part on each part of 𝑆 . Then it is

time for the recovery stage. If a single qubit 𝑞 has been modified, the recovery stage reencodes
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the state. Here, the procedure applies the identity gate to the subsystem {𝑞}, and not to the empty

subsystem ∅, as we did earlier in Apply-Gate. The reason is that the parts of 𝑆 need no longer be

sorted according to ⪯∅, but they are still guaranteed to be sorted according to ⪯{𝑞} , because only 𝑞
has been modified. And, if more than one qubit has been modified, the procedure recovers with a

parallel sort for each of the parts; importantly, any modified qubits are removed from 𝑆. subsystem,

to reflect the new ordering invariant after the permutations. At the end, both (20) and (21) hold.

Cost Analysis. P-Phase/Permute-Part runs in 𝑂 ( 𝑛𝑘
𝑝
) time, where 𝑘 is the number of gates in𝐺 :

Each gate is applied to each element once and the elements are processed in parallel.

Each of the 𝑝 processors (processor cores) is about to process roughly 𝑏 chunks. We aim to set

the number of chunks so that each fits in the cache of the processor. More specifically, if the part

𝑃 is 𝑛 items long, and that the cache of a processor can hold 𝑀 items, we set 𝑏 = ⌈ 𝑛
𝑝𝑀

⌉, and the

maximum chunk size is ⌈ 𝑛
𝑏𝑝
⌉ = ⌈𝑀 − 𝑏𝑝𝑀−𝑛

𝑏𝑝
⌉ ≤ 𝑀 .

Consequently, a task can apply each gate in 𝐺 to the entire chunk; when the next gate is to

be applied, the items are already in the cache; thus, each item is loaded and stored into memory

exactly once. (At the same time, the task minimizes the number of times it has to switch between

gates.) The number of cache misses per parallel task is𝑂 ( 𝑛
𝐵𝑏𝑝

), and the net total for all the tasks on
one processor is 𝑂 ( 𝑛

𝐵𝑝
).

Now, P-Phase/Permute-Part is called by P-Phase/Permute once for every part of 𝑆 , which costs

𝑂 ( 𝑛𝑘
𝑝
) time and 𝑂 ( 𝑛

𝐵𝑝
) cache misses, where 𝑘 is the number of gates in 𝐺 . These costs dominate

the costs of calling P-Transform on lines 6 and 12 in P-Phase/Permute. Thus, it only remains to

account for the recovery when more than one qubit is modified by the gates in 𝐺 , i.e., recovery by

sorting. Sorting needs 𝑂 ( 𝑛 log𝑛

𝑝
) time, and 𝑂 ( 𝑛 log𝑛

𝐵𝑝
) cache misses. In case log𝑛 > 𝑘 , we can avoid

the logarithmic factor in the time cost. We consider two cases:

(1) 1 < |𝑄 | < log𝑛. We split 𝐺 into subsequences for which |𝑄 | = 1
5
, Since there are at most 𝑘

subsequences, the total time is again 𝑂 ( 𝑛𝑘
𝑝
), while there are 𝑂 ( 𝑛𝑘

𝐵𝑝
) many cache misses.

(2) log𝑛 ≤ |𝑄 | ≤ 𝑘 . Now we need full sorting. The time cost is unaffected 𝑂 ( 𝑛𝑘+𝑛 log𝑛

𝑝
) = 𝑂 ( 𝑛𝑘

𝑝
).

The number of cache misses, however, becomes 𝑂 ( 𝑛 log𝑛

𝐵𝑝
).

It follows that the total time cost for 𝑘 phase/permutation gates is 𝑂 ( 𝑛𝑘
𝑝
) and the number of

cache misses is 𝑂 ( 𝑛min(𝑘,log𝑛)
𝐵𝑝

).

5 GateQueue
qblaze maintains the logical state |𝜓 ⟩ of the simulated computation as a combination of a raw

state vector |𝜓 ⟩raw followed by a gate queue Q that contains gates that are not yet applied:

|𝜓 ⟩ = Q · |𝜓 ⟩raw .
The queue is a mechanism that lets us reorder the enqueued gates, while maintaining their overall

effect on the state. The primary goals are to reduce the number of groups of phase/permutation

gates applied to the state vector as well as the number of single-qubit gate applications.

The gate queue itself consists of two parts: a phase/permutation part Q𝑝 , logically followed by

a single-qubit gate part Q𝑠 ; therefore, |𝜓 ⟩ = Q𝑠 · Q𝑝 · |𝜓raw⟩. This structure means that the queue

does not store arbitrary sequences of gates, but only those of the form described. Whenever a new

gate arrives, qblaze first checks whether it is a single-qubit gate or it is a phase-permutation gate.

A single-qubit gate can always be enqueued to Q𝑠 , because Q𝑠 is applied after Q𝑝 . On the other

5
This requires decomposing each SWAP gate into three CX gates. This is a constant factor increase, preserving the asymptotics.
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hand, if a phase-permutation gate arrives, then it might be impossible to directly enqueue it to Q𝑝

in case the new gate does not commute with Q𝑠 . In such situations the queue needs to be flushed:
The new raw state becomes the logical state, and the queue becomes empty.

Phase/permutation gate queue Q𝑝 . The first part of the gate queue is a sequence of phase/permu-

tation gates Q𝑝 . Three kinds of gates are supported natively: X, SWAP, and the parametric phase

gate PHASE𝜃 . Gates can have an arbitrary number of controls, where some may be negated. The

phase/permutation queue is represented as an array of instructions, where each instruction consists

of a gate, target qubit(s), and controls.

Single-qubit gate queue Q𝑠 . The other part of the gate queue is a set of single-qubit gates Q𝑠 . It is

represented as a partial mapping from qubit indices to single-qubit gates in the OpenQASM gate

representation U(𝜃, 𝜙, 𝜆), which can represent any single-qubit gate (up to global phase). It is closed

under composition, so at most one gate per qubit is necessary. When adding a new gate, if a gate

on the same qubit already exists, the two are combined. This means that single-qubit gates never

trigger a flush.

This representation improves over Jaques and Häner [36], who explicitly keep up to three fixed

gates per qubit: H; R𝑥 (𝜃𝑥 ); R𝑦 (𝜃𝑦). By keeping a single U gate, qblaze can represent all single-qubit

gates, including arbitrary compositions of rotations. This has several advantages:

• There is less ambiguity in the representation of gates. For example, R𝑥 (𝜋); R𝑦 (−𝜋
2
) is detected

as equivalent to H, meaning reordering is possible in more cases.

• Simplifications such as H; R𝑦 (−𝜋
2
) = Z also become easy.When the result is a phase-permutation

gate such as Z, it can be moved to Q𝑝 , “emptying” the qubit’s entry in Q𝑠 .

• Finally, a single-qubit gate is always is flushed in one step instead of up to three.

5.1 Circuit Reordering Optimizations
The gate queue essentially reorders the gates of the input circuit in order to update qblaze’s
representation more efficiently, e.g., to apply fewer (but larger) groups of phase-permutation gates.

When a phase/permutation gate 𝑃 arrives, an attempt is made to commute it with the single-qubit

gates in Q𝑠 and append it to Q𝑝 directly. We implement several rules:

(1) All gates commute with R𝑧 on their controls.

(2) A gate may be moved before an X on one of its controls by negating the control. Gates

commute with R𝑧 on their controls, so we check if the queued gate can be represented as

X; R𝑧 (𝜆).
(3) A (multi-)controlled X gate commutes with R𝑥 (𝜃 ) on its target for all 𝜃 .

(4) A (multi-)controlled X gate may be moved before a H; R𝑥 (𝜃 ) gate on its target by turning it

into a PHASE(𝜋) gate (where the target becomes an additional control), because X commutes

with R𝑥 (𝜃 ) and H; X = Z; H.
(5) A (multi-)controlled PHASE gate may be moved before a H; R𝑧 (𝜆) gate on one of its controls

by turning it into an X gate, where the control becomes the target.

If none of the rules can be applied, meaning that 𝑃 cannot be commuted before a single-qubit

gate𝑈 [𝑞] ∈ Q𝑠 on some qubit 𝑞, we consider the following cases:

(1) If𝑈 [𝑞] can be represented as a phase/permutation gate, i.e., it is either R𝑧 (𝜆) or X; R𝑧 (𝜆), it is
moved to Q𝑝 . Then 𝑃 can be added to Q𝑝 a well.

(2) Otherwise, we need to flush 𝑈 [𝑞], i.e., apply it to the raw state vector. To do that, we first

check whether𝑈 [𝑞] commutes with Q𝑝 . If it does (e.g., when Q𝑝 does not refer to 𝑞, or when

𝑈 = R𝑥 (𝜃 ) for some 𝜃 and Q𝑝 only uses 𝑞 as the target of X gates), then𝑈 [𝑞] can be applied

directly.
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(3) Otherwise, we flush Q𝑝 first and then 𝑈 [𝑞], because that is the order in which they are

applied to get the logical state.

One notable difference to Jaques and Häner [36] is that in qblaze, all single-qubit phase/permu-

tation gates go through the single-qubit gate queue, and are only moved to the phase/permutation

queue when necessary. This means that, for example, sequences of the form X; R𝑧 ; X are transformed

into a single gate, reducing the number of operations.

5.2 Eager Flushing
There are scenarios where it can be beneficial to flush a single-qubit gate immediately. This is the

case when the gate results in destructive interference, where the number of non-zero amplitudes

decreases, thus leading to a smaller state representation.

Whenever a gate in the queue needs to be flushed, we check for each enqueued (and not previously

checked) single-qubit gate whether flushing it is likely to reduce the state vector size. Given a qubit

𝑞 to check and its single-qubit gate 𝑈 [𝑞] in the queue, this check only considers a small random

sample of the state vector, and it proceeds in three steps:

(1) First, we sample a few non-zero entries from the state vector:

(𝑖1,𝜓1), (𝑖2,𝜓2), . . . , (𝑖𝑛,𝜓𝑛) (27)

(2) Then, we use binary search to fetch the amplitudes that would interact with the sampled

ones when𝑈 [𝑞] is applied (in the process we materialize any zero amplitudes):

(𝑖1 ⊕ 2
𝑞,𝜓 ′

1
), (𝑖2 ⊕ 2

𝑞,𝜓 ′
2
), . . . , (𝑖𝑛 ⊕ 2

𝑞,𝜓 ′
𝑛) (28)

(3) Finally, we check how applying𝑈 [𝑞] would change the size of the result: for each pair (𝜓𝑘 ,𝜓
′
𝑘
),

we compute the resulting pair (𝜑𝑘 , 𝜑 ′
𝑘
) and then compute the expected ratio between the size

of the old state vector 𝑆 and the new state vector 𝑆 ′:

𝜑𝑘 |𝑖𝑘⟩ + 𝜑 ′
𝑘
|𝑖𝑘 ⊕ 2

𝑞⟩ = 𝑈 [𝑞]
(
𝜓𝑘 |𝑖𝑘⟩ +𝜓 ′

𝑘
|𝑖𝑘 ⊕ 2

𝑞⟩
)

(29)

Size(𝑆 ′)
Size(𝑆) ≈ 1

𝑛

∑︁
1≤𝑘≤𝑛

[𝜑𝑘 ≠ 0] + [𝜑 ′
𝑘
≠ 0]

[𝜓𝑘 ≠ 0] + [𝜓 ′
𝑘
≠ 0] (30)

Note that even though this operation is nondeterministic, it does not affect the simulated logical

state in any way, so from the perspective of the user, the data structure is deterministic.

6 Experimental Evaluation
In this section we present an experimental evaluation of our simulator on a variety of circuits. We

answer the following research questions:

Q1 Applicability: How does qblaze generally compare to state-of-the-art CPU simulators and

various other simulation approaches?

Q2 Efficiency: Does qblaze outperform state-of-the-art sparse state vector simulators?

Q3 Scalability: How well does qblaze scale to multiple threads?

Implementation. We implemented qblaze in Rust without relying on any third-party libraries
6
.

We also provided Python bindings, through which we implemented Qiskit’s Backend interface,

which was used for the evaluation.

We validated the correctness of our implementation through extensive testing on random circuits.

Each random circuit is given both to Qiskit Aer’s statevector simulator and to qblaze, and the final
state vector is compared for approximate equality up to global phase. Circuits with measurement

6
The libc crate may optionally be used for more efficient synchronization and memory management on Linux.
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Fig. 7. Benchmark completion time (cumulative histogram). The X axis represents time in log-scale and the
Y axis shows the number of benchmarks for which the runtime is at most X. Each line represents a simulator,
and "All combined" uses the best time of all simulators shown.

were also tested, where in qblaze we ensured that the measurement results are the same as the

ones returned by Qiskit Aer.

Experimental setup. Weperformed our evaluation on a c3d-standard-360Google Compute Engine

instance. The instance has two 90-core AMD EPYC 9B14 processors and 1440GiB of DDR5 memory.

6.1 Q1: Applicability
First, we aim to demonstrate that qblaze can go head-to-head with the most performant existing

CPU-based quantum simulators, on a benchmark that was not artificially selected for sparsity.

Namely, we evaluate qblaze on QASMBench [40] in both single-threaded and multi-threaded

mode, and compare its performance to other state-of-the art simulators:

• The Q# SparseSimulator in Microsoft’s Classic QDK, the reference implementation of Jaques

and Häner [36]. Note that experimental multi-threading support had been removed prior to

the implementation being upstreamed.

• The Q# SparseSimulator in Microsoft’s Modern QDK. Compared to the Classic QDK imple-

mentation, it uses a more efficient hash table, but lacks support for queueing phase/permuta-

tion gates.

• MQT DDSIM, a binary decision diagram simulator of high implementation quality [33].

• Qiskit Aer’s statevector simulator. It is a heavily optimized dense state vector simulator. In

this evaluation we used its default settings, where it uses multi-threading for circuits with

15 or more qubits. It is the only simulator in the comparison besides qblaze that supports
multi-threading.

• Qiskit Aer’s mps simulator. It uses a representation based on matrix product states.

• Ablation study (no optimizations): A variant of qblaze with all on-the-fly circuit optimiza-

tions disabled: no commutations are performed and single-qubit gates are applied immediately.

(Note that the Q# simulators do perform such optimizations.)
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Fig. 8. Benchmark state vector sizes when run in qblaze. The X axis represents qubit count 𝑞 and the Y axis
represents density 𝑑 , where the maximum superposition size is 𝑛 = 2

𝑑𝑞 . For the benchmarks not completed
by qblaze, we extrapolated the state vector size from smaller benchmark instances. Not visible on this graph
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For the Q# simulators, we translated all benchmarks from OpenQASM to Q# in a relatively

straightforward manner. Several of the resulting OpenQASM benchmarks could however not be

executed using the classic Q# QDK, as it is very slow at compiling large circuits.

Results. In Fig. 7 we show the number of benchmarks that each of the simulators can complete

within each given time limit. We see that qblaze managed to complete the highest number of 98

benchmarks within the maximal time limit of 30 minutes. The multi-threaded version of qblaze
achieves this result already after less than 3 minutes. For two of the benchmarks (bwt_n37 and

square_root_n60), qblaze was the only tool that managed to complete them within the time limit.

In Fig. 8 we show the benchmarks completed by qblaze by qubit count and state vector size.

DDSIM. qblaze solves a similar number of benchmarks as MQT DDSIM. However, the selections

of benchmarks they manage to finish are somewhat different.

For some benchmarks (cc_*, ising_*, and qft_*), MQT DDSIM finished quickly even on very

large instances, in contrast to qblaze. The states produced by these benchmarks are indeed not

sparse but are efficiently representable as BDDs. For the QFT benchmark, however, this most likely

happened due to the simplicity of the initial state |0 . . . 0⟩ – for a more complicated initial state,

MQT DDSIM performs worse.

For other types of benchmarks, qblaze outperformed MQT DDSIM, completing larger bench-

marks within the time limit. In contrast to MQT DDSIM, in addition to the previously-mentioned

bwt_n37 and square_root_n60 benchmarks, it also finished knn_n31, dnn_n33, hhl_n14, swap_test_n25,

and factor247_n15. On factor247_n15, it was furthermore the fastest simulator overall, beating the

second fastest (Qiskit Aer MPS) by a factor of three.
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Table 1. Simulation time of Shor’s algorithm (CDKM adders) for different moduli. Multi-threaded tests were
run with 90 threads. ∗Circuits use the best qubit order we found for DDSIM.

Benchmark

qblaze
Hash table

Q#

DDSIM
∗

default no opt. single-thr. classic modern

𝑁 = 35 0.021s 0.020s 0.017s 0.016s 0.367s 0.064s 0.057s

𝑁 = 55 0.020s 0.019s 0.016s 0.016s 0.395s 0.114s 0.084s

𝑁 = 247 0.041s 0.037s 0.037s 0.037s 0.557s 0.114s 0.445s

𝑁 = 589 0.085s 0.078s 0.081s 0.081s 0.721s 0.264s 4.02s

𝑁 = 667 0.086s 0.079s 0.082s 0.082s 0.842s 0.339s 6.01s

𝑁 = 2021 0.129s 0.131s 0.126s 0.129s 1.20s 0.815s 36.0s

𝑁 = 3599 0.165s 0.167s 0.161s 0.166s 1.42s 1.02s 56.8s

𝑁 = 14351 0.228s 0.207s 0.226s 0.229s 1.12s 0.614s 43.4s

𝑁 = 36089 0.444s 0.461s 1.69s 1.90s 14.5s 27.1s > 1800s

𝑁 = 216067 0.565s 0.548s 1.25s 1.38s 10.4s 16.6s > 1800s

𝑁 = 961307 1.15s 1.33s 14.8s 16.4s 125s > 1800s > 1800s

𝑁 = 8276453 13.1s 18.1s 870s 1092s > 1800s > 1800s > 1800s

𝑁 = 16130813 28.6s 41.3s > 1800s > 1800s > 1800s > 1800s > 1800s

𝑁 = 29856637 53.6s 77.8s > 1800s > 1800s > 1800s > 1800s > 1800s

𝑁 = 51446141 106s 157s > 1800s > 1800s > 1800s > 1800s > 1800s

𝑁 = 124099307 151s 227s > 1800s > 1800s > 1800s > 1800s > 1800s

Ablation. In qblazewith no circuit optimizations, simulating the three largest Bernstein-Vazirani

circuits bv_70, bv_140, and bv_280 failed with an out-of-memory error. On those circuits the com-

mutations performed by the gate queue (both our gate queue and the two Q# simulators) makes

them trivial. On ising_n34, there was a significant difference in runtime: 44 seconds with a gate

queue and 10 minutes without. The most likely cause is the last part of the circuit: a series of

H[𝑞]; R𝑧 (0) [𝑞]; H[𝑞] on each qubit 𝑞. The gate queue is able to fully optimize this away.

The ablation study demonstrates the dominant role of our fast and scalable sparse algorithms in

outperforming the Q# sparse simulators.

Summary. Finally, we observe that while no tool managed to complete more than 98 of the

benchmarks, 112 were completed by at least one tool. We therefore conclude that there are multiple

viable approaches to simulating quantum circuits. It strongly depends on the problem instance

which of them performs best. In many cases, the best approach was indeed sparse state vector

simulation, and qblaze was overall the most well-rounded approach on QASMBench.

6.2 Q2: Efficiency
Next, we compare qblaze to state-of-the-art sparse simulators on Shor’s algorithm, an important

algorithm that exhibits sparsity. This comparison includes the two sparse simulators for Q#.

As MQT DDSIM in particular benefits from sparsity (in addition to other structure that is easily

captured with BDDs), we also include it in this comparison. Note that for DDSIM we observe

more than an order-of-magnitude difference in performance depending on the order in which the

quantum registers are defined in the OpenQASM circuit. The numbers in Tables 1 and 2 reflect the

best register order we found. (For some register orders, running times were similar to Q# modern.)

To better isolate the reason for the improvements in runtime in comparison to the sparse Q#

simulators, we compare against our ablation without circuit optimizations.
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Table 2. Simulation time of Shor’s algorithm (Draper adders) for different moduli. Multi-threaded tests were
run with 90 threads. ∗Circuits use the best qubit order we found for DDSIM.

Benchmark

qblaze
Hash table

Q#

DDSIM
∗

default no opt. single-thr. classic modern

𝑁 = 35 0.362s 0.360s 0.358s 0.419s 1.26s 3.02s 0.025s
𝑁 = 55 0.367s 0.365s 0.363s 0.466s 1.66s 4.77s 0.034s
𝑁 = 247 2.40s 3.11s 1.09s 2.33s 19.0s 89.5s 0.155s
𝑁 = 589 10.8s 11.8s 6.76s 44.1s 637s > 1800s 5.61s
𝑁 = 667 12.0s 12.1s 10.5s 77.2s 1198s > 1800s 8.15s
𝑁 = 2021 27.6s 36.8s 108s > 1800s > 1800s > 1800s 201s

𝑁 = 3599 49.3s 72.4s 260s > 1800s > 1800s > 1800s 724s

𝑁 = 14351 65.1s 86.8s 359s > 1800s > 1800s > 1800s > 1800s

Faster hash-table simulator. Furthermore, we implemented our own (single-threaded) sparse

simulator based on hash tables, to the best of our ability eliminating non-essential implementation

inefficiencies that are present in the Q# simulators (which are also single-threaded and based on

hash tables):

• We queue, rewrite, and flush gates using the implementation of qblaze. This is a bit more

general than the two Q# implementations and avoids certain degenerate cases, as noted in

Sections 5 and 5.2.

• Like the classic Q# implementation, it is statically compiled for several different qubit counts,

avoiding slow dynamic memory allocations and indirections for bit sets.

• Like the modern Q# implementation, it uses a hash table based on Google’s SwissTable, which

avoids dynamic memory allocations for nodes.

Evaluation circuits. We compare the different approaches for sparse state vector simulations

on two implementations of Shor’s algorithm: one based on CDKM adders [21] and one based on

Draper adders [8, 22]. Both of them exhibit sparsity, but to different degrees and with different

characteristics.

CDKM (high sparsity). The results for the CDKM-adder implementation of Shor’s algorithm are

shown in Table 1. When factoring 𝑁 , the maximum superposition size is 2𝜆(𝑁 ) ∈ 𝑂 (𝑁 ), where
𝜆(𝑁 ) < 𝑁 is the Carmichael function [17]. Our circuit uses 3

⌈
log

2
𝑁

⌉
+ 4 qubits, which means

we get a cubic advantage over dense state vector simulators. On larger benchmarks, the better

data structure, optimizations and parallelization of our qblaze implementation have a significant

effect and qblaze consistently dominates those benchmarks, outperforming the hash-table-based

simulators as well as MQT DDSIM by orders of magnitude.

Draper (variable sparsity). The implementation of Shor’s algorithm based on Draper adders

(simulation results in Table 2) has a maximum superposition size of 2
1+⌈log

2
𝑁⌉𝜆(𝑁 ) ∈ 𝑂 (𝑁 2). This

maximum superposition size is achieved when the output register of the Draper adders is in the

Fourier basis. When it is in the computational basis, the number of non-zero elements is 𝑂 (𝑁 ). On
average, across all gate applications, the number of non-zero elements is 𝑂 ( 𝑁 2

log𝑁
). Our circuit uses

2

⌈
log

2
𝑁

⌉
+ 3 qubits, which means that on average the state is still quite sparse. In Fig. 9 we show

the per-gate application times by state vector size.
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Fig. 9. Per-operation runtimes by state vector size when running Shor-Draper on 𝑁 = 14351. For single-qubit
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(with 64 threads) is used when the superposition size is over 211, which results in a significant increase in
gate application time due to synchronization overhead. The dashed line shows the theoretical cost for six
sequential passes through memory (matching the implementation of single-qubit gates), ignoring any caches.

qblaze simulates single-qubit gates very efficiently: it only performs a few sequential passes

throughmemory, compared to hash tables, which require a full rebuild. This is visible in these results,

where qblaze is significantly faster than the implementations based on hash tables, even when

running in single-threaded mode. On our larger benchmarks, the single-threaded implementation

even vastly outperforms the runner-up MQT DDSIM despite the qubit order being specifically

selected to favor its state representation using BDDs. The higher performance of even our single-

threaded implementation highlights the importance of designing state representations to be cache-

friendly.

For large enough benchmarks, we often gain an additional order of magnitude in performance

due to parallelization, investigated in more detail next.

6.3 Q3: Scalability
All operations performed by qblaze support multi-threading, so in the best case we can expect

linear speedup. In Fig. 10 we evaluate the performance of the simulator on the two implementations

of Shor’s algorithm.

The evaluation was performed on a dual-socket system with 90 cores per socket and SMT support.

In runs with 𝑡 ≤ 90 threads, the first 𝑡 physical cores of the first socket are used, and memory is

allocated within the local NUMA node. For 𝑡 = 180 and 𝑡 = 360 threads, both sockets are used with

memory interleaving. SMT is never explicitly disabled, but the scheduler of the operating system

avoids it when 𝑡 ≤ 180.

CDKM adders, 𝑁 = 961,307. In this benchmark we observe almost linear scaling up to 8 threads,

which corresponds to one core complex (CCX) on our CPU. The maximum superposition size is
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Fig. 10. Performance when simulating Shor’s algorithm for different thread counts.

959,136, which at 32 bytes per element fits in the L3 cache. Above 8 threads, there is a performance

penalty from using more than one CCX because the L3 cache is per-CCX.

CDKM adders, 𝑁 = 124,099,307. Here, the maximum superposition size is roughly 130 times

larger, hence gate application is more expensive. We only show results for 8 or more threads,

because simulation did not finish within 30 minutes using fewer than 8 threads.

We observe approximately linear scaling up to 180 threads, with a slight improvement from

enabling SMT when using 360 threads. This is possible because the superposition is large enough

and most of the time is spent applying phase/permutation gates, which happens almost entirely

within L2 cache. I.e., the benchmark is compute bound.

Draper adders,𝑁 = 14,351. This benchmark has a much higher number of non-phase/permutation

gates, and a significant fraction of the time is spent applying single-qubit gates. Unlike the applica-

tion of large batches of phase/permutation gates, which is mostly done in cache and is compute

bound, applying single-qubit gates is done as linear passes over the entire state vector, and is

bandwidth bound, i.e., it is limited by the bandwidth of system memory.

We observe almost no increase in performance past 32 threads and a decline past 48 threads.

This is caused by several factors:

• Most gates are applied on superpositions that are significantly smaller than the largest ones

encountered. The circuit mostly consists of Draper adders, which use a quantum Fourier

transform to change between the (sparse) computational basis and the (dense) Fourier basis.
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The additional synchronization overhead from more threads is comparatively more expensive

on operations with smaller superposition size.

• For large superpositions, 32 threads are already enough to utilize over half of the system’s

theoretical memory bandwidth on large superpositions, so adding more cores suffers from

diminishing returns.

• Using both CPU sockets at once has a negative effect on performance due to the increase in

core-to-core latency.

Overall, our experiments demonstrate that qblaze is competitive with state-of-the art simulators

on diverse workloads, vastly outperforms on sparse workloads previous hash-table-based sparse

state vector simulators as well as MQT DDSIM, using a significantly simpler data structure, and

is also able to scale to a large number of threads. In fact, qblaze is the first sparse state vector

simulator that successfully scales to even just more than one core.

7 Conclusion and Future Work
We introduced qblaze, a highly efficient parallel classical simulator for quantum circuits. The

simulator is based on a sparse state vector representation and utilizes novel efficient and parallel

algorithms for all quantum operations. Our experimental evaluation of qblaze indicates that it is

vastly more efficient than prior sparse vector simulators (often by multiple orders of magnitude).

This is partly due to its ability to scale with a large numbers of cores on various classes of quantum

circuits, in contrast to previous sparse simulators, which were not able to successfully scale beyond

one core.

Ourwork opens up various interesting future research directions, includingGPU implementations

of our algorithms, which may significantly boost performance due to the higher memory bandwidth,

as well as investigating new optimizations such as gate fusion, that reduce the number of passes

through memory. Finally, sharding the state vector may permit distributed simulation.
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